The Widgipedia gallery
requires Adobe Flash
Player 7 or higher.

To view it, click here
to get the latest
Adobe Flash Player.

Selasa, Mei 31, 2011

Mengenal Berbagai Tipe PLTN di Dunia (2)

Jenis reaktor terakhir yang ada di dunia adalah reaktor grafit dan reaktor cepat. Grafit sebagai bahan moderator sudah digunakan oleh ilmuwan Enrico Fermi sejak reaktor nuklir pertama Chicago Pile No.1 (CP 1) dibangun. Grafit terkenal murah dan dapat diperoleh dalam jumlah besar. Perlu diketahui, Plutonium (Pu-239) yang digunakan pada bom atom yang dijatuhkan di jepang pada saat Perang Dunia II dibuat di reaktor grafit.

5. Reaktor Grafit
5.1. Reaktor Pendingin Gas (Gas Cooled Reactor, GCR)


Setelah perang dunia berakhir reaktor GCR adalah salah satu tipe reaktor yang didesain ulang di Inggris maupun Perancis. Reaktor ini menggunakan bahan bakar logam uranium alam, moderator grafit pendingin gas karbondioksida. Bahan kelongsong terbuat dari paduan magnesium (Magnox), oleh karena itu reaktor ini disebut sebagai reaktor Magnox. Reaktor Magnox mempunyai pembangkitan daya listrik cukup besar dan efisiensi ekonomi yang baik. Raktor tipe modifikasi Magnox pernah dibangun di Jepang pada tahun 1967 sebagai PLTN Tokai. Setelah beroperasi selama 30 tahun reaktor ini ditutup pada tahun 1998.


5.2. Reaktor Pendingin Gas Maju (Advanced Gas-cooled Reactor,AGR)

Di Inggris fokus pengembangan teknologi PLTN bergeser ke reaktor berbahan bakar uranium dengan pengayaan rendah, yang memiliki kerapatan daya dan efisiensi termal yang tinggi. Unjuk kerja reaktor ini terbukti dapat diperbaiki. Di Inggris reaktor ini hanya sempat dibangun sebanyak 14 buah saja karena setelah pertengahan tahun 1980 kebijakan Pemerintah Inggris berubah.

5.3. Reaktor Pendingin Gas Suhu Tinggi (High Temperatur Gas-cooled Reactor, HTGR)

Reaktor ini menggunakan gas helium sebagai pendingin. Karakteristik menonjol yang unik dari reaktor HTGR ini adalah konstruksi teras didominasi bahan moderator grafit sehingga temperatur operasi dapat ditingkatkan menjadi tinggi dan efisiensi pembangkitan listrik dapat mencapai lebih dari 40%. Terdapat 3 bentuk bahan bakar dari HTGR, yaitu dapat berupa: (a) Bentuk batang seperti reaktor air ringan (dipakai di reaktor Dragon dan Peach Bottom); (b) Bentuk blok, di mana di dalam lubang blok grafit yang berbentuk segi enam di masukkan batang bahan bakar (dipakai di reaktor Fort St. Vrain, MHTGR, HTTR); (c) Bentuk bola (peble bed), di mana butir bahan bakar bersalut didistribusikan dalam bola grafit (dipakai di reaktor AVR, THTR-300).

5.4. Reaktor Pipa Tekan Air Didih Moderator Grafit (Light Water Gas-cooled Reactor, LWGR)

RBMK adalah reaktor tipe ini yang hanya dikembangkan di Rusia. Reaktor ini tidak menggunakan tangki kalandria (berisi air berat) seperti reaktor tipe SGHWR tetapi menggunakan grafit sebagai moderator. Oleh karena itu dimensi reaktor menjadi besar. Sekitar 1700 buah pipa tekan menembus susunan blok grafit. Di dalam pipa tekan diisi batang bahan bakar di mana di sekelilingnya mengalir air ringan yang mengambil panas dari batang bahan bakar sehingga mendidih. Uap yang terbentuk dikirim ke turbin pembangkit listrik untuk memutar turbin dan membangkitkan listrik. Salah satu reaktor tipe ini yang terkenal karena mengalami kecelakaan adalah reaktor Chernobyl No.4 yang merupakan reaktor tipe RBMK-1000. Salah satu kegagalan desain pada reaktor tipe RBMK yang dianggap sebagai kambing hitam terjadinya kecelakaan Chernobyl adalah tidak tersedianya bejana pengungkung reaktor.

6. Reaktor Cepat (Fast Reactor, FR), Reaktor Pembiak Cepat (Liquid Metal Fast Breeder Reactor, LMFBR)

Seperti tersirat dalam nama tipe reaktor ini, neutron cepat yang dihasilkan dari reaksi fisi dengan kecepatan tinggi dikondisikan sedemikian rupa sehingga diserap oleh uranium-238 menghasilkan plutonium-239. Dengan kata lain di dalam reaktor dapat dibiakkan (dibuat) unsur plutonium. Rapat daya dalam teras reaktor cepat sangat tinggi. Oleh karena itu, sebagai pendingin biasanya digunakan bahan logam natrium cair atau logam cair campuran natrium dan kalium (NaK) yang mempunyai kemampuan tinggi dalam mengambil panas dari bahan bakar. Konstruksi reaktor pembiak cepat terdiri dari pendingin primer yang berupa bahan logam cair mengambil panas dari bahan bakar dan kemudian mengalir ke alat penukar panas antara (intermediate heat exchanger), selanjutnya energi panas ditransfer ke pendingin sekunder dalam alat penukar panas antara ini. Kemudian pendingin sekunder (bahan pendingin adalah natrium cair atau logam cair natrium) yang tidak mengandung bahan radioaktif akan mengalir membawa panas yang diterima dari pendingin primer menuju ke perangkat pembangkit uap dan memberikan panas ke pendingin tersier (air ringan) sehingga temperaturnya meningkat dan mendidih (proses pembangkitan uap). Uap yang dihasilkan selanjutnya dialirkan ke turbin untuk memutar generator listrik yang dikopel dengan turbin. Komponen sistem primer dari reaktor pembiak cepat terdiri dari bejana reaktor, pompa sirkulasi primer, alat penukar panas antara. Komponen ini dirangkai oleh pipa penyalur pendingin membentuk suatu untai (loop), karena itu reaktor seperti ini digolongkan dalam kelas reaktor untai.

Apabila seluruh komponen sistem primer di atas semuanya dimasukkan ke dalam bejana reaktor maka reaktor pembiak cepat seperti ini digolongkan dalam kelas reaktor tangki atau reaktor kolam. Contoh reaktor pembiak cepat tipe reaktor untai adalah reaktor prototipe Monju di Jepang, sedangkan untuk tipe reaktor kolam adalah reaktor Super Phoenix di Perancis yang sudah menjadi reaktor komersial. Reaktor Cepat Eropa (Europian Fast Reactor, EFR) yang secara intensif dikembangkan oleh negara-negara Eropa diharapkan akan mulai masuk pasar komersial pada tahun 2010 nanti.


Sumber:
Ensiklopedia Teknologi Nuklir–BATAN
http://www.coolschool.ca/lor/PH11/unit9/U09L04.htm
http://www.jaea.go.jp/04/monju/EnglishSite/contents01/contents01a.html
Sumber-sumber lain

0 komentar:

Related Posts Plugin for WordPress, Blogger...

Para Sahabat

Pengunjung

free counters

  © Blogger templates The Professional Template by Ourblogtemplates.com 2008

Back to TOP